O.P.Code: 20CS0512

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech II Year II Semester Regular & Supplementary Examinations August-2023 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & CSIT)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Differences between DFA and NFA with examples. CO₁ **L4**
 - **6M b** Convert the following NFA to DFA. CO₂ **L6 6M**

- a Write why minimization of finite automata is required and explain the **L6 6M** procedure adapted for minimization of finite automata in Table filling method.
 - b Convert the given Moore Machine counts into equivalent into Mealy CO2 **6M** machine.

UNIT-II

- a Write applications of Pumping Lemma. CO₃ L1 **6M b** Prove that the language $L = \{an b \mid n \ge 1\}$ is not regular using pumping CO₃ L3 6M
 - lemma.

OR

- a Design a FA from given regular expression 10 + (0 + 11)0*1CO₂ **L6 6M**
 - **b** Convert given regular grammar into Finite Automata CO₃ L3 **6M**
 - $S \rightarrow 01A$
 - $A \rightarrow 10B$
 - $B \rightarrow 0A|11$

UNIT-III

- **4M** a State what is meant by derivation and parse tree with examples. **CO4** L1
 - **b** Remove Left recursion from the grammar
 - $S \rightarrow Sab/T$
 - T→Tcd/F
 - F→Fa/G

OR

8M

CO4

L3

6	a	Write the process adapted to convert the grammar into CNF.	CO ₄	L2	4M
	b	A grammar G which is context-free has the productions	CO ₄	L3	8M
		$S \rightarrow Aab$			
		A → Bba			
		$B \rightarrow bB$			
		$B \rightarrow c$			
		Compute the string $w = 'acbabc'$ with left most derivation.			700
		UNIT-IV			
7		Write the process adapted and convert the given PDA into an equivalent CFG.	CO5	L3	12M
		$\delta (q0,a0,z0) \rightarrow (q1,z1z0)$			
		$\delta(q0,b,z0 \rightarrow (q1,z2z0)$			
		$\delta(q1,a,z1 \rightarrow (q1,z1z1)$			
		$\delta(q1,b,z1) \rightarrow (q1,\lambda)$			
		$\delta(q1,b,z2) \rightarrow (q1,z2z2)$			
		$\delta(q1,a,z2) \rightarrow (q1,\lambda)$			
		$\delta(q1, \lambda, z2) \rightarrow (q1, \lambda) // \text{ accepted by the empty stack}$			
		OR			
8	a	Define NPDA.	CO ₅	L1	2M
	b	Construct a NPDA for accepting the language $L = \{a^ib^jc^kd^l \mid i==k \text{ or } \}$	CO ₅	L3	10M
		j==l,i>=1,j>=1}			
		UNIT-V			
9	a	Define State Machine.	CO ₅	L1	2M
	b	Construct a Turing machine that recognizes the language L={a ⁿ b ⁿ ,	CO6	L6	10M
		n>1}. Show an ID for the string 'aaabbb' with tape symbols.			
		OR			
10	a	Explain the procedure adapted to convert RE to TM.	CO ₆	L2	4M
	b	Convert the given regular Expression (a+b)*(aa+bb)(a+b)* to TM. *** END ***	CO6	L3	8M